Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Sci Transl Med ; 16(731): eadg4517, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38266105

RESUMO

The human retina is a multilayered tissue that offers a unique window into systemic health. Optical coherence tomography (OCT) is widely used in eye care and allows the noninvasive, rapid capture of retinal anatomy in exquisite detail. We conducted genotypic and phenotypic analyses of retinal layer thicknesses using macular OCT images from 44,823 UK Biobank participants. We performed OCT layer cross-phenotype association analyses (OCT-XWAS), associating retinal thicknesses with 1866 incident conditions (median 10-year follow-up) and 88 quantitative traits and blood biomarkers. We performed genome-wide association studies (GWASs), identifying inherited genetic markers that influence retinal layer thicknesses and replicated our associations among the LIFE-Adult Study (N = 6313). Last, we performed a comparative analysis of phenome- and genome-wide associations to identify putative causal links between retinal layer thicknesses and both ocular and systemic conditions. Independent associations with incident mortality were detected for thinner photoreceptor segments (PSs) and, separately, ganglion cell complex layers. Phenotypic associations were detected between thinner retinal layers and ocular, neuropsychiatric, cardiometabolic, and pulmonary conditions. A GWAS of retinal layer thicknesses yielded 259 unique loci. Consistency between epidemiologic and genetic associations suggested links between a thinner retinal nerve fiber layer with glaucoma, thinner PS with age-related macular degeneration, and poor cardiometabolic and pulmonary function with a thinner PS. In conclusion, we identified multiple inherited genetic loci and acquired systemic cardio-metabolic-pulmonary conditions associated with thinner retinal layers and identify retinal layers wherein thinning is predictive of future ocular and systemic conditions.


Assuntos
Doenças Cardiovasculares , Estudo de Associação Genômica Ampla , Adulto , Humanos , Tomografia de Coerência Óptica , Face , Retina/diagnóstico por imagem
3.
PLoS Biol ; 21(8): e3002233, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37561710

RESUMO

To address the challenge of translating genetic discoveries for type 1 diabetes (T1D) into mechanistic insight, we have developed the T1D Knowledge Portal (T1DKP), an open-access resource for hypothesis development and target discovery in T1D.


Assuntos
Diabetes Mellitus Tipo 1 , Humanos , Diabetes Mellitus Tipo 1/genética , Genômica , Genética Humana
5.
Nat Commun ; 14(1): 2229, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-37076491

RESUMO

Expression quantitative trait locus (eQTL) studies illuminate genomic variants that regulate specific genes and contribute to fine-mapped loci discovered via genome-wide association studies (GWAS). Efforts to maximize their accuracy are ongoing. Using 240 glomerular (GLOM) and 311 tubulointerstitial (TUBE) micro-dissected samples from human kidney biopsies, we discovered 5371 GLOM and 9787 TUBE genes with at least one variant significantly associated with expression (eGene) by incorporating kidney single-nucleus open chromatin data and transcription start site distance as an "integrative prior" for Bayesian statistical fine-mapping. The use of an integrative prior resulted in higher resolution eQTLs illustrated by (1) smaller numbers of variants in credible sets with greater confidence, (2) increased enrichment of partitioned heritability for GWAS of two kidney traits, (3) an increased number of variants colocalized with the GWAS loci, and (4) enrichment of computationally predicted functional regulatory variants. A subset of variants and genes were validated experimentally in vitro and using a Drosophila nephrocyte model. More broadly, this study demonstrates that tissue-specific eQTL maps informed by single-nucleus open chromatin data have enhanced utility for diverse downstream analyses.


Assuntos
Estudo de Associação Genômica Ampla , Nefropatias , Humanos , Estudo de Associação Genômica Ampla/métodos , Teorema de Bayes , Nefropatias/genética , Genômica , Cromatina/genética , Polimorfismo de Nucleotídeo Único , Predisposição Genética para Doença/genética
6.
bioRxiv ; 2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36778413

RESUMO

Translating genetic discoveries for type 1 diabetes (T1D) into mechanistic insight can reveal novel biology and therapeutic targets but remains a major challenge. We developed the T1D Knowledge Portal (T1DKP), a disease-specific resource of genetic and functional annotation data that enables users to develop hypotheses for T1D-based research and target discovery. The T1DKP can be used to query genes and genomic regions for genetic associations, identify epigenomic features, access results of bioinformatic analyses, and obtain expert-curated resources. The T1DKP is available at http://t1d.hugeamp.org .

7.
Dev Cell ; 57(3): 387-397.e4, 2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35134345

RESUMO

Lipid droplets (LDs) are organelles of cellular lipid storage with fundamental roles in energy metabolism and cell membrane homeostasis. There has been an explosion of research into the biology of LDs, in part due to their relevance in diseases of lipid storage, such as atherosclerosis, obesity, type 2 diabetes, and hepatic steatosis. Consequently, there is an increasing need for a resource that combines datasets from systematic analyses of LD biology. Here, we integrate high-confidence, systematically generated human, mouse, and fly data from studies on LDs in the framework of an online platform named the "Lipid Droplet Knowledge Portal" (https://lipiddroplet.org/). This scalable and interactive portal includes comprehensive datasets, across a variety of cell types, for LD biology, including transcriptional profiles of induced lipid storage, organellar proteomics, genome-wide screen phenotypes, and ties to human genetics. This resource is a powerful platform that can be utilized to identify determinants of lipid storage.


Assuntos
Bases de Dados como Assunto , Gotículas Lipídicas/metabolismo , Animais , Ésteres do Colesterol/metabolismo , Mineração de Dados , Genoma , Humanos , Inflamação/patologia , Metabolismo dos Lipídeos , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Fenótipo , Fosforilação , Interferência de RNA
8.
Hum Genet ; 141(8): 1431-1447, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35147782

RESUMO

Drug development and biological discovery require effective strategies to map existing genetic associations to causal genes. To approach this problem, we selected 12 common diseases and quantitative traits for which highly powered genome-wide association studies (GWAS) were available. For each disease or trait, we systematically curated positive control gene sets from Mendelian forms of the disease and from targets of medicines used for disease treatment. We found that these positive control genes were highly enriched in proximity of GWAS-associated single-nucleotide variants (SNVs). We then performed quantitative assessment of the contribution of commonly used genomic features, including open chromatin maps, expression quantitative trait loci (eQTL), and chromatin conformation data. Using these features, we trained and validated an Effector Index (Ei), to map target genes for these 12 common diseases and traits. Ei demonstrated high predictive performance, both with cross-validation on the training set, and an independently derived set for type 2 diabetes. Key predictive features included coding or transcript-altering SNVs, distance to gene, and open chromatin-based metrics. This work outlines a simple, understandable approach to prioritize genes at GWAS loci for functional follow-up and drug development, and provides a systematic strategy for prioritization of GWAS target genes.


Assuntos
Diabetes Mellitus Tipo 2 , Estudo de Associação Genômica Ampla , Cromatina/genética , Diabetes Mellitus Tipo 2/genética , Predisposição Genética para Doença , Humanos , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
9.
Am J Hum Genet ; 109(1): 81-96, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34932938

RESUMO

Large-scale gene sequencing studies for complex traits have the potential to identify causal genes with therapeutic implications. We performed gene-based association testing of blood lipid levels with rare (minor allele frequency < 1%) predicted damaging coding variation by using sequence data from >170,000 individuals from multiple ancestries: 97,493 European, 30,025 South Asian, 16,507 African, 16,440 Hispanic/Latino, 10,420 East Asian, and 1,182 Samoan. We identified 35 genes associated with circulating lipid levels; some of these genes have not been previously associated with lipid levels when using rare coding variation from population-based samples. We prioritize 32 genes in array-based genome-wide association study (GWAS) loci based on aggregations of rare coding variants; three (EVI5, SH2B3, and PLIN1) had no prior association of rare coding variants with lipid levels. Most of our associated genes showed evidence of association among multiple ancestries. Finally, we observed an enrichment of gene-based associations for low-density lipoprotein cholesterol drug target genes and for genes closest to GWAS index single-nucleotide polymorphisms (SNPs). Our results demonstrate that gene-based associations can be beneficial for drug target development and provide evidence that the gene closest to the array-based GWAS index SNP is often the functional gene for blood lipid levels.


Assuntos
Exoma , Variação Genética , Estudo de Associação Genômica Ampla , Lipídeos/sangue , Fases de Leitura Aberta , Alelos , Glicemia/genética , Estudos de Casos e Controles , Biologia Computacional/métodos , Bases de Dados Genéticas , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Predisposição Genética para Doença , Genética Populacional , Estudo de Associação Genômica Ampla/métodos , Humanos , Metabolismo dos Lipídeos/genética , Fígado/metabolismo , Fígado/patologia , Anotação de Sequência Molecular , Herança Multifatorial , Fenótipo , Polimorfismo de Nucleotídeo Único
10.
Kidney Int ; 102(1): 136-148, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34929253

RESUMO

Apolipoprotein L1 (APOL1)-associated focal segmental glomerulosclerosis (FSGS) is the dominant form of FSGS in Black individuals. There are no targeted therapies for this condition, in part because the molecular mechanisms underlying APOL1's pathogenic contribution to FSGS are incompletely understood. Studying the transcriptomic landscape of APOL1 FSGS in patient kidneys is an important way to discover genes and molecular behaviors that are unique or most relevant to the human disease. With the hypothesis that the pathology driven by the high-risk APOL1 genotype is reflected in alteration of gene expression across the glomerular transcriptome, we compared expression and co-expression profiles of 15,703 genes in 16 Black patients with FSGS at high-risk vs 14 Black patients with a low-risk APOL1 genotype. Expression data from APOL1-inducible HEK293 cells and normal human glomeruli were used to pursue genes and molecular pathways uncovered in these studies. We discovered increased expression of APOL1 and nine other significant differentially expressed genes in high-risk patients. This included stanniocalcin, which has a role in mitochondrial and calcium-related processes along with differential correlations between high- and low-risk APOL1 and metabolism pathway genes. There were similar correlations with extracellular matrix- and immune-related genes, but significant loss of co-expression of mitochondrial genes in high-risk FSGS, and an NF-κB-down regulating gene, NKIRAS1, as the most significant hub gene with strong differential correlations with NDUF family (mitochondrial respiratory genes) and immune-related (JAK-STAT) genes. Thus, differences in mitochondrial gene regulation appear to underlie many differences observed between high- and low-risk Black patients with FSGS.


Assuntos
Apolipoproteína L1 , Glomerulosclerose Segmentar e Focal , Apolipoproteína L1/genética , Glomerulosclerose Segmentar e Focal/genética , Glomerulosclerose Segmentar e Focal/patologia , Células HEK293 , Humanos , Glomérulos Renais/patologia , Transcriptoma
12.
Nat Genet ; 53(6): 840-860, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34059833

RESUMO

Glycemic traits are used to diagnose and monitor type 2 diabetes and cardiometabolic health. To date, most genetic studies of glycemic traits have focused on individuals of European ancestry. Here we aggregated genome-wide association studies comprising up to 281,416 individuals without diabetes (30% non-European ancestry) for whom fasting glucose, 2-h glucose after an oral glucose challenge, glycated hemoglobin and fasting insulin data were available. Trans-ancestry and single-ancestry meta-analyses identified 242 loci (99 novel; P < 5 × 10-8), 80% of which had no significant evidence of between-ancestry heterogeneity. Analyses restricted to individuals of European ancestry with equivalent sample size would have led to 24 fewer new loci. Compared with single-ancestry analyses, equivalent-sized trans-ancestry fine-mapping reduced the number of estimated variants in 99% credible sets by a median of 37.5%. Genomic-feature, gene-expression and gene-set analyses revealed distinct biological signatures for each trait, highlighting different underlying biological pathways. Our results increase our understanding of diabetes pathophysiology by using trans-ancestry studies for improved power and resolution.


Assuntos
Glicemia/genética , Característica Quantitativa Herdável , População Branca/genética , Alelos , Epigênese Genética , Perfilação da Expressão Gênica , Genoma Humano , Estudo de Associação Genômica Ampla , Hemoglobinas Glicadas/metabolismo , Humanos , Herança Multifatorial/genética , Mapeamento Físico do Cromossomo , Locos de Características Quantitativas/genética
13.
J Bone Miner Res ; 35(9): 1626-1633, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32777102

RESUMO

The development of high-throughput genotyping technologies and large biobank collections, complemented with rapid methodological advances in statistical genetics, has enabled hypothesis-free genome-wide association studies (GWAS), which have identified hundreds of genetic variants across many loci associated with musculoskeletal conditions. Similarly, basic scientists have valuable molecular cellular and animal data based on musculoskeletal disease that would be enhanced by being able to determine the human translation of their findings. By integrating these large-scale human genomic musculoskeletal datasets with complementary evidence from model organisms, new and existing genetic loci can be statistically fine-mapped to plausibly causal variants, candidate genes, and biological pathways. Genes and pathways identified using this approach can be further prioritized as drug targets, including side-effect profiling and the potential for new indications. To bring together these big data, and to realize the vision of creating a knowledge portal, the International Federation of Musculoskeletal Research Societies (IFMRS) established a working group to collaborate with scientists from the Broad Institute to create the Musculoskeletal Knowledge Portal (MSK-KP)(http://mskkp.org/). The MSK consolidates omics datasets from humans, cellular experiments, and model organisms into a central repository that can be accessed by researchers. The vision of the MSK-KP is to enable better understanding of the biological mechanisms underlying musculoskeletal disease and apply this knowledge to identify and develop new disease interventions. © 2020 American Society for Bone and Mineral Research (ASBMR).


Assuntos
Loci Gênicos , Estudo de Associação Genômica Ampla , Animais , Genômica , Humanos
15.
Diabetes ; 66(7): 2019-2032, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28341696

RESUMO

To identify novel coding association signals and facilitate characterization of mechanisms influencing glycemic traits and type 2 diabetes risk, we analyzed 109,215 variants derived from exome array genotyping together with an additional 390,225 variants from exome sequence in up to 39,339 normoglycemic individuals from five ancestry groups. We identified a novel association between the coding variant (p.Pro50Thr) in AKT2 and fasting plasma insulin (FI), a gene in which rare fully penetrant mutations are causal for monogenic glycemic disorders. The low-frequency allele is associated with a 12% increase in FI levels. This variant is present at 1.1% frequency in Finns but virtually absent in individuals from other ancestries. Carriers of the FI-increasing allele had increased 2-h insulin values, decreased insulin sensitivity, and increased risk of type 2 diabetes (odds ratio 1.05). In cellular studies, the AKT2-Thr50 protein exhibited a partial loss of function. We extend the allelic spectrum for coding variants in AKT2 associated with disorders of glucose homeostasis and demonstrate bidirectional effects of variants within the pleckstrin homology domain of AKT2.


Assuntos
Diabetes Mellitus Tipo 2/genética , Jejum/metabolismo , Resistência à Insulina/genética , Insulina/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , População Branca/genética , Negro ou Afro-Americano/genética , Alelos , Povo Asiático/genética , Estudos de Casos e Controles , Diabetes Mellitus Tipo 2/metabolismo , Finlândia , Frequência do Gene , Predisposição Genética para Doença , Genótipo , Hispânico ou Latino/genética , Humanos , Razão de Chances
16.
Diabetes ; 66(2): 335-346, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27899486

RESUMO

Variants in HNF1A encoding hepatocyte nuclear factor 1α (HNF-1A) are associated with maturity-onset diabetes of the young form 3 (MODY 3) and type 2 diabetes. We investigated whether functional classification of HNF1A rare coding variants can inform models of diabetes risk prediction in the general population by analyzing the effect of 27 HNF1A variants identified in well-phenotyped populations (n = 4,115). Bioinformatics tools classified 11 variants as likely pathogenic and showed no association with diabetes risk (combined minor allele frequency [MAF] 0.22%; odds ratio [OR] 2.02; 95% CI 0.73-5.60; P = 0.18). However, a different set of 11 variants that reduced HNF-1A transcriptional activity to <60% of normal (wild-type) activity was strongly associated with diabetes in the general population (combined MAF 0.22%; OR 5.04; 95% CI 1.99-12.80; P = 0.0007). Our functional investigations indicate that 0.44% of the population carry HNF1A variants that result in a substantially increased risk for developing diabetes. These results suggest that functional characterization of variants within MODY genes may overcome the limitations of bioinformatics tools for the purposes of presymptomatic diabetes risk prediction in the general population.


Assuntos
Diabetes Mellitus Tipo 2/genética , Fator 1-alfa Nuclear de Hepatócito/genética , Estudos de Coortes , Feminino , Frequência do Gene , Predisposição Genética para Doença , Variação Genética , Genótipo , Células HeLa , Humanos , Masculino , Razão de Chances , Ativação Transcricional
17.
Hum Mol Genet ; 25(10): 2070-2081, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-26911676

RESUMO

To gain insight into potential regulatory mechanisms through which the effects of variants at four established type 2 diabetes (T2D) susceptibility loci (CDKAL1, CDKN2A-B, IGF2BP2 and KCNQ1) are mediated, we undertook transancestral fine-mapping in 22 086 cases and 42 539 controls of East Asian, European, South Asian, African American and Mexican American descent. Through high-density imputation and conditional analyses, we identified seven distinct association signals at these four loci, each with allelic effects on T2D susceptibility that were homogenous across ancestry groups. By leveraging differences in the structure of linkage disequilibrium between diverse populations, and increased sample size, we localised the variants most likely to drive each distinct association signal. We demonstrated that integration of these genetic fine-mapping data with genomic annotation can highlight potential causal regulatory elements in T2D-relevant tissues. These analyses provide insight into the mechanisms through which T2D association signals are mediated, and suggest future routes to understanding the biology of specific disease susceptibility loci.


Assuntos
Mapeamento Cromossômico , Diabetes Mellitus Tipo 2/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Negro ou Afro-Americano/genética , Alelos , Povo Asiático/genética , Inibidor p16 de Quinase Dependente de Ciclina , Inibidor de Quinase Dependente de Ciclina p18/genética , Diabetes Mellitus Tipo 2/patologia , Feminino , Humanos , Canal de Potássio KCNQ1/genética , Desequilíbrio de Ligação , Masculino , Polimorfismo de Nucleotídeo Único , Proteínas de Ligação a RNA/genética , Elementos Reguladores de Transcrição/genética , População Branca/genética , tRNA Metiltransferases/genética
18.
Nat Commun ; 7: 10531, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26818947

RESUMO

Genome-wide association studies (GWAS) have identified more than 80 susceptibility loci for type 2 diabetes (T2D), but most of its heritability still remains to be elucidated. In this study, we conducted a meta-analysis of GWAS for T2D in the Japanese population. Combined data from discovery and subsequent validation analyses (23,399 T2D cases and 31,722 controls) identify 7 new loci with genome-wide significance (P<5 × 10(-8)), rs1116357 near CCDC85A, rs147538848 in FAM60A, rs1575972 near DMRTA1, rs9309245 near ASB3, rs67156297 near ATP8B2, rs7107784 near MIR4686 and rs67839313 near INAFM2. Of these, the association of 4 loci with T2D is replicated in multi-ethnic populations other than Japanese (up to 65,936 T2Ds and 158,030 controls, P<0.007). These results indicate that expansion of single ethnic GWAS is still useful to identify novel susceptibility loci to complex traits not only for ethnicity-specific loci but also for common loci across different ethnicities.


Assuntos
Diabetes Mellitus Tipo 2/genética , Predisposição Genética para Doença , Povo Asiático/genética , Estudos de Casos e Controles , Proteínas de Ligação a DNA/genética , Estudo de Associação Genômica Ampla , Humanos , Japão , Polimorfismo de Nucleotídeo Único , Proteínas Supressoras da Sinalização de Citocina/genética , Fatores de Transcrição/genética
19.
PLoS Genet ; 11(1): e1004876, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25625282

RESUMO

Genome wide association studies (GWAS) for fasting glucose (FG) and insulin (FI) have identified common variant signals which explain 4.8% and 1.2% of trait variance, respectively. It is hypothesized that low-frequency and rare variants could contribute substantially to unexplained genetic variance. To test this, we analyzed exome-array data from up to 33,231 non-diabetic individuals of European ancestry. We found exome-wide significant (P<5×10-7) evidence for two loci not previously highlighted by common variant GWAS: GLP1R (p.Ala316Thr, minor allele frequency (MAF)=1.5%) influencing FG levels, and URB2 (p.Glu594Val, MAF = 0.1%) influencing FI levels. Coding variant associations can highlight potential effector genes at (non-coding) GWAS signals. At the G6PC2/ABCB11 locus, we identified multiple coding variants in G6PC2 (p.Val219Leu, p.His177Tyr, and p.Tyr207Ser) influencing FG levels, conditionally independent of each other and the non-coding GWAS signal. In vitro assays demonstrate that these associated coding alleles result in reduced protein abundance via proteasomal degradation, establishing G6PC2 as an effector gene at this locus. Reconciliation of single-variant associations and functional effects was only possible when haplotype phase was considered. In contrast to earlier reports suggesting that, paradoxically, glucose-raising alleles at this locus are protective against type 2 diabetes (T2D), the p.Val219Leu G6PC2 variant displayed a modest but directionally consistent association with T2D risk. Coding variant associations for glycemic traits in GWAS signals highlight PCSK1, RREB1, and ZHX3 as likely effector transcripts. These coding variant association signals do not have a major impact on the trait variance explained, but they do provide valuable biological insights.


Assuntos
Glicemia/genética , Diabetes Mellitus Tipo 2/genética , Glucose-6-Fosfatase/genética , Insulina/sangue , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/patologia , Exoma/genética , Frequência do Gene , Estudo de Associação Genômica Ampla , Receptor do Peptídeo Semelhante ao Glucagon 1 , Índice Glicêmico/genética , Humanos , Insulina/genética , Polimorfismo de Nucleotídeo Único , Receptores de Glucagon/genética
20.
Diabetes ; 64(5): 1853-66, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25524916

RESUMO

Insulin sensitivity, insulin secretion, insulin clearance, and glucose effectiveness exhibit strong genetic components, although few studies have examined their genetic architecture or influence on type 2 diabetes (T2D) risk. We hypothesized that loci affecting variation in these quantitative traits influence T2D. We completed a multicohort genome-wide association study to search for loci influencing T2D-related quantitative traits in 4,176 Mexican Americans. Quantitative traits were measured by the frequently sampled intravenous glucose tolerance test (four cohorts) or euglycemic clamp (three cohorts), and random-effects models were used to test the association between loci and quantitative traits, adjusting for age, sex, and admixture proportions (Discovery). Analysis revealed a significant (P < 5.00 × 10(-8)) association at 11q14.3 (MTNR1B) with acute insulin response. Loci with P < 0.0001 among the quantitative traits were examined for translation to T2D risk in 6,463 T2D case and 9,232 control subjects of Mexican ancestry (Translation). Nonparametric meta-analysis of the Discovery and Translation cohorts identified significant associations at 6p24 (SLC35B3/TFAP2A) with glucose effectiveness/T2D, 11p15 (KCNQ1) with disposition index/T2D, and 6p22 (CDKAL1) and 11q14 (MTNR1B) with acute insulin response/T2D. These results suggest that T2D and insulin secretion and sensitivity have both shared and distinct genetic factors, potentially delineating genomic components of these quantitative traits that drive the risk for T2D.


Assuntos
Glicemia/genética , Diabetes Mellitus Tipo 2/metabolismo , Variação Genética , Homeostase/fisiologia , Glicemia/metabolismo , Bases de Dados Factuais , Diabetes Mellitus Tipo 2/etnologia , Regulação da Expressão Gênica/fisiologia , Genoma , Estudo de Associação Genômica Ampla , Genótipo , Hispânico ou Latino , Homeostase/genética , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...